
Optimizing Single Server Content Streaming

Nevin Zheng
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 12213

nlz@andrew.cmu.edu

Carlos Gonzalez
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 12213

cggonzal@andrew.cmu.edu

ABSTRACT
In recent years, a multitude of content streaming ser-

vices which allow distributed users to consume their favorite
songs, movies, and other media have emerged. Since the in-
troduction of Netflix and YouTube, the amount of content
delivered via the internet has increased every year. Users
prioritize low latency, high quality, and a lack of waiting
for content to download or buffer. While large companies
may employ complex distributed architectures to efficiently
stream their content, this paper seeks to compare common
single-server architectural patterns in order to determine which
patterns are most suitable for simultaneously streaming au-
dio and video. We evaluate the performance of our servers
by measuring the relationship between client-side latency
distribution and request rate. Our goal is to compare com-
monly used server architectures in order to find the best per-
forming server for streaming. We demonstrate that certain
server architectures lead to better performance and should
be preferred in content streaming applications.

1. INTRODUCTION
The popularity of streamed content has caused com-

panies such as Netflix, Amazon, Apple, and others to in-
vest heavily into streaming technologies. On the server
side, A large majority of technologies that the typical
consumer will interact with daily are built upon HTTP
and the traditional client-server interaction model.

Streaming content generally comes in either audio,
video, or a combination of the two. Many advances have
been made in file encoding that can improve the user
experience. For example, file compression can reduce
a file’s size without reducing perceived quality while
allowing forward error correction to tolerate the loss
of transmitted data. In this paper, we focus primar-
ily on server architectures and technologies which have
enabled the proliferation of streaming content that re-
quires both audio and video such as movies.

In this paper we compare several popular server stream-
ing architectures based on event driven and multithreaded
architectures. Our goal is to find an optimal server ar-
chitecture from among the most popular server archi-
tectures and frameworks such as Node.js, Deno, Rust +

Tokio, and a multithreaded threadpool based architec-
ture. We evaluate performance based on how quickly a
server is able to process a fixed number of requests per
second which we varied between 100 requests per sec-
ond to 1000 requests per second. Surprisingly, our mul-
tithreaded server outperforms all other architectures in
both the 100 req/s and 1000 req/s scenarios. The mul-
tithreaded server is able to outperform all other imple-
mentations by several orders of magnitude in the 99.9%
of latency during the 1000 req/s test benchmark. We
discuss these results in section 5.5 and propose further
studies to be done in section 5.6 which allow for a more
rigorous comparison between our servers in a real world
situation.

2. BACKGROUND
A simple media content server can be created by using

the HTML audio and video tags and having a server
directly serve the requested file. But then the following
questions arise:

1. How do we handle the buffering that is done so the
client does not have to wait until most of the file
is downloaded in order to begin playing the file?

2. What protocols exist so that our server can provide
the client with only the relevant parts of the audio
or video content that need to be buffered?

3. How do we make sure that our client-side code is
portable across browsers?

4. What structure does our content need to have on
the server side so that we can maximize through-
put?

5. Which server architectures should be used in or-
der to minimize the client side latency of streamed
content and allow services to scale to serve millions
of concurrent users?

6. How do we adapt to clients with slower internet
connections?

7. What are the common streaming architectures?

1



8. How do we efficiently send data to the client?

Question 5 is the focus of this paper and is answered
thoroughly in sections 3 - 7. Questions 1, 2, 4 and 6
are answered in section 2.1. Question 3 is answered in
section 2.2. Question 7 is answered in section 2.4 and
question 8 is answered in section 2.3.

2.1 Streaming Frameworks
In response to the lack of a standardized protocol to

stream content, large companies have created several
different protocols to answer these questions. YouTube
and Netflix have relied on Dynamic Adaptive Streaming
over HTTP (DASH) in order to scale to meet their users
needs. Apple instead uses HTTP Live Streaming (HLS)
for both their audio and video services and Microsoft
has relied on Microsoft Smooth Streaming [1].

These frameworks all rely on having the same con-
tent on the server at different bit-rates (i.e. high qual-
ity, medium quality, and low quality) and partitioning
the content into small chunks called segments that can
be delivered to the client as needed. This allows the
server to adapt to a client’s connection by serving the
highest quality possible, one segment at a time, without
the client getting stuck ”pause buffering.” For example,
if a client is watching a movie at a high quality but
their internet suddenly becomes slower, the server can
switch to serving segments that are of a lower bit rate so
that the client can continue watching the movie without
having to pause to buffer. This method of dynamically
changing a stream’s quality to meet the client’s needs
is referred to as Adaptive Bit-rate Streaming. See figure
1 for an example directory structure. See [2] and [1] for
more details.

Each protocol has a slightly different way of describ-
ing the structure of its content on the server side but
most use some form of a manifest to describe how their
data is partitioned. Even though all of these protocols
have differences in how they handle the structuring of
their data on the server side and how they dynamically
adapt bit rates based on a client’s connection, they all
solve the client-side buffering problem in a similar but
slightly different way. The lack of a standardized frame-
work to handle buffering on the client side led the W3C
to propose the Media Source Extension in 2013 which
extends the audio and video HTML tags and provides
a common ground for handling buffering on the client
side regardless of the server side specifics.

2.2 Media Source Extension
The standard HTML video and audio tags do not

facilitate the buffering of media. The Media Source
Extension [3] was proposed by the W3C in order to
facilitate the management of buffering video and au-
dio streams by forcing browsers to support the Media-
Source and SourceBuffer Javascript objects. The Medi-

Figure 1: An example of the structure of a di-
rectory holding segmented data. Here the movie
is offered in high, medium, and low quality each
of which is split up into 3 segments. If a client’s
connection degrades, the next segment that is
sent to the client can be taken from a bit rate
with a lower quality. In practice a movie usually
consists of segments of about 10 seconds which
causes it to be split into hundreds of segments.

aSource object represents a source of media data (au-
dio or video) that can be attached to a video or audio
tag in order to provide a source of content. Addition-
ally, the MediaSource object has a SourceBuffer prop-
erty that handles fetching the data from the server and
placing it into a buffer that the MediaSource object uses
to provide the content to the user. These objects pro-
vide a standardized way for developers to write portable
media-driven code across browsers. See figure 2 and the
consumer sections below for further details.

2.3 Codecs
The format in which data is stored on the server plays

a key role in how efficiently it can be distributed. For
example, a minute of uncompressed 1920 x 1080 video
recorded at 30 frames per second would require 14.93
gigabytes of storage, not including audio. As a result,
both audio and video are coded and decoded using stan-
dardized methods called codecs which allow for efficient
coding and decoding of data.

Content is fed into the coder method of a codec and
the output is then stored inside a container such as
MP4, WebM, and Quicktime (MOV) which is served to
the client. When a client needs to decode the data that
is inside a container it is given, the codec is used to de-
code the data and present it to the user. We want to
emphasize that a codec’s job is to compress and decom-
press data while the container’s is to simply hold data
that has been compressed by a codec. When the data

2



Figure 2: The Media Source Extension API as
described in [3]. A single MediaSource object,
shown at the top of the figure here, is attached to
a video HTML tag as described in the consumer
sections later in the paper. Three SourceBuffers
are created and added to the MediaSource ob-
ject. The leftmost SourceBuffer handles buffer-
ing and decoding both audio and video data.
The middle SourceBuffer buffers and decodes
video data. The rightmost SourceBuffer han-
dles buffering and decoding audio data. When
the browser requires more data to display to the
user, it looks in the SourceBuffers for data, de-
codes it, then sends it to the audio device if it
is audio data or displays it to the user in the
video tag display region if it is video. The client
side Javascript called, described in the consumer
sections later in this paper, handles the queries
made to the backend to make sure the buffers
are always full.

stored inside a container must be uncompressed to play
the audio or video, it is decompressed by the codec and
presented to the user. The difference between contain-
ers and codecs is a common source of confusion. See
figure 3 for a visualization.

Audio codecs allow for efficient compression and de-
compression of audio data. The most common audio
codecs are MP3, AAC, Opus, and Vorbis. In our tests
we use AAC as it is commonly used for audio content
that will be stored alongside video such as when stor-
ing movies. See [4] for further details. Similar to audio
codecs, video codecs allow for efficient compression and
decompression of video data. The most common codecs
are AV1, AVC (H.264), and VP9. In our tests we use
AVC (H.264). See [5] for further details.

Figure 3: Example of codec pipeline as shown in
[6]. The raw video and audio data shown on the
left is compressed using their respective codec
and the compressed output is stored in the con-
tainer, here shown as the large square in the
middle of the figure. This container is what is
served to the user. When the data needs to be
played in the browser, it is again passed through
the codec in order to decompress it before being
played to the user.

2.4 Common Server Architectures
Most streaming service architectures in use today are

either multi-threaded with a thread pool or event driven
[3] [1] [2]. A multi-threaded server handles requests by
creating a shared buffer and a thread pool [7]. The main
thread’s job is to enter the server loop and place the
file descriptor of accepted connections into the shared
buffer. The threads in the thread pool will each take a
connection request from the buffer and handle it. If the
buffer is empty, the threads will block until a connec-
tion is placed into the buffer by the main thread. The
process that threads in the thread pool use to handle a
request is shown in figure 4.

Figure 4: Example of multi-threaded server de-
sign as shown in [8]. Each thread will go through
the steps shown here when handling a request.
Note that our multithreaded architecture de-
scribed in section 4.3 uses a thread pool which
is not shown here.

Event driven architectures use the select, poll, or epoll
system calls on linux, with epoll being the preferred
modern syscall, kqueue on macOS, and IO Completion

3



Ports on Windows systems. Each of these facilities al-
low applications to asynchronously wait for a change to
occur in a relevant set of file descriptors. When a change
is detected, the request is handled by the server. This
process is shown in figure 5.

Figure 5: Example of event driven server design
as shown in [8]. The event dispatcher will use
epoll, poll, or select in order to wait for a change
in one of the file descriptors that are in a speci-
fied set. When a change is detected, the request
is handled by the server.

2.5 Summary
Although the Media Source Extension is still a draft,

it is widely supported across browsers and provides a
common starting point for implementing the client side
portion of a streaming service. The server side part of
a service will typically use a multi-threaded or event
driven architecture that implements a protocol such as
MPEG-DASH to serve segmented data. Additionally,
a thorough understanding of codecs and containers is
needed to understand streaming due to their ability
to efficiently compress and decompress data. The sub-
tleties involved with audio/video codecs and containers
were our largest source of frustration when developing
our tests.

3. HIGH LEVEL DESIGN
Our architecture consists of a distributor and a con-

sumer. The distributor is a server that follows the event
driven pattern shown in figure 5. The consumer is our
client side HTML and JS files that handle creating a
MediaSource object, making the relevant content re-
quests to the server, and pushing the segmented con-
tent into the SourceBuffers. The distributor and con-
sumer follow the standard client-server request and re-
sponse pattern. While content distribution can be done
in many ways, this simplified model captures the fun-
damentals of streaming and excludes complex optimiza-
tions.

3.1 Distributor
Our distributor is a static file server which supports

GET requests for content and the Partial-Content HTTP
header. Application level in-memory caching of content
is not considered and all content is read from disk. The

distributor can be used in two modes. Firstly, the client
can make repeated partial ranges requests for portions
of the same file. Secondly, it can serve a file tree in the
form of Figure 1. However, there is no support for a
manifest containing metadata on the segments, which
indicates that the client must be aware of the files it
is requesting. Adaptive streaming based on quality of
service metrics are not considered. For our experiment,
we configured our load testing tool to request manually
segmented portions of a video file.

3.2 Consumer
Our consumer consists of an HTML file with a video

tag and an external Javascript file that does the heavy
lifting. We rely on the MediaSource and SourceBuffer
objects provided by the Media Source Extension [3] in
order to provide buffering capabilities for audio and
video with the MP4 file’s relevant codecs for each. A
single SourceBuffer is used to hold both audio and video
in order to eliminate making subsequent calls to our
server for the same MP4 file.

To provide thorough testing and assess the through-
put performance impact of using the Media Source Ex-
tension, we created two separate consumers. The first
consumer we tested only made asynchronous calls to our
distributor server without pushing the fetched results
into the relevant SourceBuffers. The second consumer
architecture we tested would make the asynchronous
calls and also push the results into the SourceBuffer.
We did not see a measurable performance impact when
pushing into the buffer so all of our testing was per-
formed using the second approach since it is how stream-
ing services are implemented in practice.

3.3 Summary
We have designed and implemented a simplified model

of content streaming using a static file server, called
distributor, which supports both the Partial-Content
HTTP header as well as serving file trees in the style
of Figure 1. This distributor is queried by a front end
consumer which requests the relevant segments of an
MP4 file and plays them to the user. Production con-
tent servers can support additional features and func-
tionalities such as adaptive-streaming based on quality-
of-service metrics, changing language-tracks, subtitles,
and etc. However, in essence, all forms of content stream-
ing are variations on GET requests for Partial-Content.

4. IMPLEMENTATION

4.1 Distributor
Our distributor implementation is built with Rust,

Tokio, and Hyper. Rust is a multi-paradigm program-
ming language designed for performance, concurrency,
and memory safety [9]. Tokio is an asynchronous run

4



time for Rust [10]. Hyper is a fast and correct HTTP
implementation built on top of Tokio [11]. Using this
technology stack allows developers to quickly implement
and deploy highly performant internet services. The im-
plementation follows the template given in figure 5. All
of the servers we implemented act as static file servers
that utilize the Partial Content header. File accesses
are direct to disk with no intermediate caching layer.

4.2 Consumer
A MediaSource object can be created and attached

to a video tag with id ”movie” and have a SourceBuffer
initialized with the following code:

let movieTag = document.getElementById("movie

");

let myMediaSource = new MediaSource();

movieTag.src = URL.createObjectURL(

myMediaSource);

const movieSourceBuffer = myMediaSource.

addSourceBuffer(’video/mp4; codecs="mp4a

.40.2,avc1.64002a"’);

Once this is done, the consumer makes repeated AJAX
calls to the server via the fetch API using the ”Content-
Range” header to request only the needed parts of the
MP4 file. The server responds to each AJAX call with
the relevant segments of an MP4 file which are then
pushed into the SourceBuffer. In order to help the
server cope with load, the consumer only makes requests
when there is less than 15 seconds left of buffered con-
tent on the client’s browser.

4.3 Multithreaded Server
Our multi-threaded server uses a thread pool to han-

dle incoming requests. It is written in C and uses
pthreads. The main thread accepts incoming client re-
quests and places them into a shared buffer. A fixed
number of worker threads are spawned when the server
starts and block until there are requests in the shared
buffer. Once a request is placed into the shared buffer,
the worker threads handle the requests and send a re-
sponse back to the specified client. Then the thread will
look again into the shared buffer for the next request to
be processed and block if it is empty.

4.4 Node.js
Next we use Node.js [13]. Node is a popular Javascript

runtime that allows Javascript to be run outside the
browser and is built on top of libuv[14]. Node uses a
single threaded event loop to dispatch and service asyn-
chronous requests. It uses a thread pool for tasks that
are either computationally expensive, or those that can-

Figure 6: Node.js’ architecture [12]. Applica-
tions are written in Javascript which are inter-
preted and serviced by the V8 engine. Node.js
extends V8 by providing bindings for libuv. The
libuv event loop is single threaded. Some heav-
ier weight tasks will be run in a thread pool
outside the event loop. We could not find the
original source of this diagram, however it aligns
with our knowledge of Node.js’ internals.

not be done asynchronously, such as file I/O.

4.5 Deno
Lastly we use Deno [15]. Deno is very similar to

Node.js, except that it it written in Rust and Tokio. In
the functional block diagrams 6 and 7. You can imagine
swapping libuv for the Tokio runtime, Node and Deno
both require use of a scheduler for asynchronous tasks.
From a developer standpoint, Rust and Tokio is a safer
and easier to work with than C and libuv. From the
Application developer standpoint, Node and Deno are
very similar. Both are interpreted languages and suffer
overhead in translating between JavaScript and native
code. The benefits of either lie primarily in productiv-
ity gained from using JavaScript, a simpler language to
learn than C or Rust.

Figure 7: Deno Architecture Diagram [16]. Like
Node Deno is also built on top of the V8 JS
engine with library bindings to Rust and tokio.

5



4.6 Summary
Our distributor is a simple content streaming server

server using Rust, Tokio, and Hyper. The consumer
uses the MediaSource and SourceBuffer Javascript ob-
jects to query the server for the relevant content re-
quired by the client. We are using a simple HTTP
GET protocol that is extended with the HTTP Partial-
Content header to support more immediate playback
and buffering. Our multi-threaded server spawns a fixed
number of threads when the server is started. Then, ev-
ery incoming request has its file descriptor added to a
shared buffer that is handled by the worker threads. In
addition we implemented static file servers using Node.js
and Deno, which are commercially available Javascript
server side runtimes.

5. EVALUATION
We evaluate and compare our multithreaded server,

distributor, Node.js, and Deno servers with benchmarks
that vary the requests per second from 100 req/s to 1000
req/s. Our goal was to find an optimal server architec-
ture for streaming content that requires both audio and
video. We find that the C multithreaded server signif-
icantly outperforms all other implementations, in some
cases by several orders of magnitude.

For all of our tests we use our Consumer as the client
side implementation that creates the MediaSource ob-
ject, makes the queries for content, and pushes the con-
tent into the SourceBuffers.

5.1 Tools Used
For our load testing tool we selected Vegeta [17]. Veg-

eta is a versatile HTTP load testing tool written in
Golang which applies a constant request rate to HTTP
services. It supports a rich set of HTTP options as well
as a report and plotting tool.

We are utilizing HDRHistograms [18] to visualize our
tail latency distributions. HDRHistograms visualize the
proportion of requests made that are served within a
certain time.

5.2 Environment
For the sake of simplicity, we are running our experi-

ments on a single machine that runs both clients and the
server communicating over localhost. Our setup con-
sists of a quad core Intel(R) Core(TM) i5-7400 CPU @
3.00GHz running Ubuntu 18.04, rustc 1.51, node 14.6.1,
Deno 1.9.2, and Vegeta 12.8.4. Future iterations of the
experiment could run clients and servers on different
machines, more closely emulating a real world service.

5.3 Experiment
We are interested in examining how an increase in

request rates impacts the latencies of the server in the

99% and higher tail latencies as shown in figures 9, 10,
11, and 12.

On our test machine, we spin up our server with a
directory of content to serve. We then launch Vegeta
with a varying set of parameters and content ranges.
Vegeta allows you to specify a set of HTTP requests
to query and use. This feature allows us to request
different portions of different files concurrently, which
is what happens on a real server.

5.4 Results
Our results are shown in figures 9, 10, 11, and 12. Fig-

ure 9 shows the results of all of the servers when put un-
der a load of 100 requests per second. Similarly, figure
10 shows the results of the servers when placed under
a load of 1000 requests per second. These figures show
that the Node server outperforms the deno server, espe-
cially as load increases. A surprising result comes from
the performance gap between the multi-threaded server
that uses a thread pool and the other servers. Due to
this large gap in performance, we included figures 11
and 12 that only show the multi-threaded server’s per-
formance when under a load of 100 and 1000 requests
per second, respectively.

5.5 Discussion
We initially expected our Rust server and C multi

threaded server to perform similarly, and for Deno to
outperform Node.js, with Rust and C outperforming
Deno and node. Instead, Under a load of 100 request/sec-
ond we observed Rust under-performing all the other
servers, and the C server outperforming with Deno and
Node performing comparably. In the 1000 request/sec-
ond test we observed Deno in last place, outperformed
by Rust, with Node in second, with the C server still
outperforming. Results are presented in Figures 8 and
9.

Our results surprised us. We believe that some com-
bination of the following issues may have contributed
to the performance gaps.

Firstly, Each server architecture has different amounts
of overhead. The Rust/Tokio/Hyper stack provides sup-
port for building production-ready, fully-featured web
applications, and the tokio scheduler introduces another
possible source of overhead. Node and Deno are both
scripting languages that introduce the additional over-
head of interpreting JavaScript and calling into the asyn-
chronous runtime. In Node.JS’ case JavaScript has to
call into the node API to perform OS operations. In
Deno’s case, it has to exchange messages with the deno
rust runtime. In contrast, the C multithreaded server
is bare-bones, having only the capabilities to send the
requested files without performing security checks or
caching. Additional work could be conducted to quan-
tify and find sources of overhead in each architecture.

6



Secondly, The design goals of each architecture are
different. Tokio, Node.JS, and Deno are all designed to
efficiently handle many thousands of concurrent clients
connecting over networks without Quality of Service
guarantees. For example, one developer reported us-
ing Tokio to concurrently download 100,000 files [19].
Another developer achieved over a million clients con-
current connection in Node.JS [20]. As Deno is a newer
project, we were not able to an example of Deno be-
ing deployed in a high concurrency application or ex-
periment, but we expect that it would perform well.
Although experimentation is required, we expect that
the C multi-threaded server will not be able to han-
dle such a high number of concurrent clients since the
fixed size shared buffer will become inundated with re-
quests and cause the clients to timeout as requests are
dropped. Our experiment applied relatively low con-
stant request rates to each server and plotted the la-
tency distributions. It could be the overhead that sup-
ports high concurrency for Rust, Deno, and Node leads
to poorer performance in our evaluation, but favors our
C multi-threaded server. Additional work could evalu-
ate server performance when the number of concurrent
clients is varied. Having this information could give us
the full picture into the relationship between request
rate, number of concurrent clients, and latency.

Figure 8: Result of an HTTP Server Through-
put benchmark conducted by the Deno develop-
ment [21]. Ten keep alive connections perform
requests serially, and as quickly as possible.

Thirdly, We believe that our choice of 100 and 1000
requests/second may be too low to sufficiently stress
the multi-threaded C server. We are using benchmarks
performed by the Deno development team as a point of
reference [21]. In the benchmark we are highlighting, 10
Keep Alive connections make requests as quickly as pos-
sible in order to estimate the servers maximum through-
put. Figure 8, presents the throughputs achieved by
servers implemented in Deno, Node, and Hyper. We
note that the throughputs for Deno, Node, and Hyper
in this experiment are approximately 10,000, 20,000,
and 80,000 requests per second respectively, nearly two
orders of magnitude higher than the our highest request

rate 1000 requests per second. Although the benchmark
they conduct is a different scenario, it does suggest that
we are not placing enough pressure on our servers in or-
der to make a fair comparison. We expect the C server
to either have higher latencies at higher request rates
or cause client timeouts at high latencies.

Fourthly, The single server setup likely introduced
contention between our load tester and server process,
which may have affected latency. However, the Deno
benchmarks above likely run on a single machine as well.
Regardless, future iterations of the experiment could go
fully distributed in order to both increase request rate
and reducing contention.

5.6 Future Work
In future work, we aim to design and conduct ad-

ditional experiments to explore each of the discussion
points and hypotheses mentioned in 5.5.

We first hypothesize that overhead is one reason for
the performance gap between Rust and C. In order
to explore this we would need to profile each applica-
tion or framework to characterize the sources of over-
head in each server across a request-response life cycle.
While the performance profiles could not be directly
compared, it could reveal the relative costs of overhead
such as: Tokio Scheduling, JavaScript Interpretation,
or JS to asynchronous run-time communication costs.

We believe that our second, third, and fourth pro-
posal all have the same solution: Shifting to a more
distributed testing environment that can handle more
concurrent clients, and higher request rates. Our second
proposal is to examine the effect of concurrent clients
on request latency. A distributed setup along with
some way to simulate slow and intermittent connections
would give us insight into how each architecture scales
with the number of concurrent clients, a primary moti-
vator for the design of Tokio, Node.JS, and Deno which
our current evaluation methodology does not consider.

Our third proposal is examine the scalability of our
servers as the request rate increases. A distributed
setup would enable much higher request rates while
eliminating resource contention stemming from a sin-
gle machine setup, our fourth proposal.

5.7 Summary
We compared the distributor server with event driven

servers written in Node and Deno – two event driven
server architectures used by popular streaming appli-
cations. We also compared our distributor with an ar-
chitecture that uses a multi-threaded approach with a
thread pool, which was found to significantly outper-
form all others. Further studies should be done to in-
vestigate the drastic performance differences found be-
tween event driven and multi-threaded architectures in
the case of content streaming.

7



Figure 9: Performance of servers under load of 100 requests per second for 5 seconds.

Figure 10: Performance of servers under load of 1000 requests per second for 5 seconds.

6. RELATED WORK
[22] surveys the performance of the different Adaptive

Bit Rate (ABR) algorithms that are used on sites such
as Twitch and YouTube. Many of the tested sites are
known to use MPEG-DASH and thus provide robust
and efficient ABR. While this paper does not focus on
ABR, the Media Source Extension is flexible enough to
adhere to any ABR since it does not impose restrictions
on how the browser fetches data. Thus, our testing
framework can be used to evaluate all of these sites.

[23] highlights the effects that rateless codes could
have on single server streaming to users with diverse
codec support. Our architecture only supports browsers
that can interpret the AVC (H.264) and AAC codecs,
but the increase in performance from rateless codes is
worth investigating for services that require serving mil-
lions of concurrent users.

[24] investigates the needs of a content delivery video-
on-demand service that chooses to use a peer to peer
architecture that sits behind a proxy server. When the
proxy server needs to retrieve a chunk of video that it
does not have cached, it queries one of the peer to peer
nodes which communicate to find the needed chunk.
Even though this peer to peer to approach gives bene-
fits such as less memory required per node, we suspect

that the complexities that it will cause for a streaming
service at a large scale will outweigh the benefits since it
becomes difficult to make predictions about the consis-
tency of the system. [25] also studies video on demand
services that use a peer to peer architecture similar to
those in [24] and outlines the problems of scaling these
services. We believe that our proposed architecture can
be more easily scaled across worker nodes using cloud
computing resources such as those provided by AWS.

The event-driven architecture approach shown in [8]
is similar to ours. Further speed ups may be achieved
by focusing on how accept is being used as discussed in
[26] and using techniques mentioned in [27] and [28].

7. CONCLUSION
This paper presented a novel server architecture for

streaming video and audio content. We compare the
performance of the architecture with 3 popular archi-
tectures in use today that use either multi-threaded or
event driven architectures. We compared the perfor-
mance of the servers when placed under varying loads
and presented the results. We found that our results
did not align with our initial expectations. Namely, our
Rust server significantly under-performed the C Multi-
threaded server, in some cases by several orders of mag-

8



Figure 11: Multithreaded server performance under a load of 100 requests per second for 5 seconds.

Figure 12: Multithreaded server performance under a load of 1000 requests per second for 5 seconds.

nitude. Further study is required to resolve this differ-
ence in performance. Our current data is not sufficient
to make any definitive statements regarding any perfor-
mance advantages or disadvantages of any of the servers
we tested. We proposed further studies in order to more
rigorously study the topic.

References
[1] Christopher Mueller. MPEG-DASH vs. Apple HLS

vs. Microsoft Smooth Streaming vs. Adobe HDS.
2015. url: https://bitmovin.com/mpeg-dash-
vs-apple-hls-vs-microsoft-smooth-streaming-

vs-adobe-hds/.

[2] Paul Berberian. “How video streaming works on
the web: An introduction”. In: Canal-Tech 24 (Jan.
2018). url: https://medium.com/canal-tech/
how-video-streaming-works-on-the-web-an-

introduction-7919739f7e1.

[3] Matthew Wolenetz et al. “Media Source Exten-
sions”. In: W3C (Nov. 2016). url: https://www.
w3.org/TR/media-source/.

[4] Mozilla Development Network. The ”codecs” pa-
rameter in common media types. 2020. url: https:
//developer.mozilla.org/en-US/docs/Web/

Media/Formats/codecs_parameter.

[5] Mozilla Development Network. Web video codec
guide. 2020. url: https://developer.mozilla.
org/en-US/docs/Web/Media/Formats/Video_

codecs.

[6] Odin Lindblom. How to Choose the Right Codec
and Container for Your Video Workflow. 2020.
url: https://www.videomaker.com/article/
c03/18165-how-to-choose-the-right-codec-

and-container-for-your-video-workflow.

[7] Randal E. Bryant and David R. O’Hallaron. Com-
puter Systems: A Programmer’s Perspective. 3rd.
Pearson, 2015. isbn: 013409266X.

[8] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel.
“Flash: An Efficient and Portable Web Server”.
In: 1999 USENIX Annual Technical Conference
(USENIX ATC 99). Monterey, CA: USENIX As-
sociation, June 1999. url: https://www.usenix.
org/legacy/events/usenix99/full_papers/

pai/pai.pdf.

[9] Assorted. Rust. 2020. url: https://www.rust-
lang.org.

[10] Assorted. Tokio. 2020. url: https://tokio.rs.

[11] Assorted. Hyper. 2020. url: https://github.

com/hyperium/hyper.

9



[12] Assorted. nodejsDiagram. 2016. url: https://

stackoverflow.com/questions/36766696/which-

is-correct-node-js-architecture.

[13] Assorted. nodejs. 2020. url: https://nodejs.
org/en/.

[14] Assorted. libuv. 2020. url: https://libuv.org.

[15] Ryan Dahl et al. denoland. 2020. url: https :

//deno.land/manual@v1.9.2.

[16] Ryan Dahl et al. denoarch. 2020. url: https://
deno . land / manual @ v1 . 9 . 2 / contributing /

architecture.

[17] Tomás Senart. Vegeta. 2020. url: https://github.
com/tsenart/vegeta.

[18] Gil Tene. HDRHistogram. 2020. url: http : / /

hdrhistogram.org.

[19] Pat Shaughnessy. Downloading 100,000 Files Us-
ing Async Rust. 2020. url: http://patshaughnessy.
net/2020/1/20/downloading-100000-files-

using-async-rust.

[20] real identity unknown Caustik. Node.js w/1M con-
current connections! 2012. url: https://blog.
caustik . com / 2012 / 08 / 19 / node - js - w1m -

concurrent-connections/.

[21] Various. Deno Continuous Benchmarks. 2021. url:
https://deno.land/benchmarks.

[22] Melissa Licciardello, Maximilian Grüner, and Ankit
Singla. Understanding video streaming algorithms
in the wild. 2020. arXiv: 2001.02951 [cs.NI].

[23] Yao Li and Emina Soljanin. Rateless Codes for
Single-Server Streaming to Diverse Users. 2010.
arXiv: 0912.5055 [cs.IT].

[24] Soumen Kanrar and Soamdeep Singha. “Content
Delivery Through Hybrid Architecture in Video
on Demand System”. In: Ingénierie des systèmes
d information 24.3 (Aug. 2019), pp. 289–301. issn:
2116-7125. doi: 10 . 18280 / isi . 240309. url:
http://dx.doi.org/10.18280/isi.240309.

[25] Manjaiah D.H Hareesh.K. Peer-to-Peer Live Stream-
ing and Video On Demand Design Issues and its
Challenges. 2011. arXiv: 1111.6735 [cs.NI].

[26] Tim Brecht, David Pariag, and Louay Gammo.
“accept()able Strategies for Improving Web Server
Performance”. In: 2004 USENIX Annual Techni-
cal Conference (USENIX ATC 04). Boston, MA:
USENIX Association, June 2004. url: https://
www.usenix.org/conference/2004- usenix-

annual- technical- conference/acceptable-

strategies-improving-web-server.

[27] Gaurav Banga, Jeffrey C. Mogul, and Peter Dr-
uschel. “A Scalable and Explicit Event Delivery
Mechanism for UNIX”. In: 1999 USENIX Annual
Technical Conference (USENIX ATC 99). Mon-
terey, CA: USENIX Association, June 1999. url:
https : / / www . usenix . org / legacy / event /

usenix01/cfp/banga/banga.pdf.

[28] David Pariag et al. “Comparing the Performance
of Web Server Architectures”. In: ACM (Mar. 2007).
issn: 978-1-59593-636. url: http://course.ece.
cmu.edu/~ece845/docs/pariag-2007.pdf.

10


